CH2MHILL_®

An Evaluation of Coastal Restoration Projects in Louisiana for Nutrient Credit Trading in the Lower Mississippi River Basin

Guerry Holm, Ruth Rouse, Lisa Bacon, Brian Perez, and Jim Bays Chuck Killebrew and Jennifer Mouton

9TH INTECOL International Wetlands Conference June 3-8 2012 Orlando Florida

Nitrate in the Mississippi River

 'Dead Zone' the size of New Jersey

"...little consistent progress has been made since 1980..."

- Nitrate loadings essentially unchanged for 2 decades
- Environmental groups are suing EPA over lack of setting nutrient criteria for the Miss. R. basin states

Sprague, L.A. et al. 2011. Nitrate in the Mississippi R. and Its Tributaries, 1980-2008: Are We Making Progress? Environ. Sci. Tech

Stemming Nutrient Pollution Along the Mississippi River

- Nutrient credit trading
 - Used in smaller watersheds
 - Regulatory drivers lacking along the Ms R.
- Restoration measures
 - designing wetlands for agricultural landscape
 - large floodplain projects
 - coastal river diversions

Nutrient Credit Trading

- Entity subject to a nutrient reduction requirement
 PS discharger
- Meets or exceeds its responsibilities by purchasing a cost effective, demonstrably equivalent treatment option
- Credit sellers can be NPS or PS

Project Components

Nutrient **removal capacity** of delta wetlands? Credit **supply** CPRA projects can generate? Nutrient removal **costs?** What could **demand** look like in the future?

Louisiana's Coastal Master Plan: Restoration Project Types

• River diversions

- siphons
- freshwater diversions
- sediment diversions

\$4 Billion in planned projects

Cumulative flow 400,000 cfs

Sediment Diversions >50,000 cfs

Controlled Freshwater Diversions

1998

2006

- Two diversions operating capacity > 8,000 cfs
- Potential modification to increase flows in future

Nutrient Removal Estimates: Literature and Preliminary Modeling

Scientific Basis for Nutrient Removals: Mass Balance Estimates

		Removal	Efficiency	Mass Removal		
Study area	System	TN RE (%)	TP RE (%)	TN g m-2 yr-1	TP g m-2 yr-1	
Fourleague Bay ¹	Fluvial	40%	20%	25	1.0	
Caernarvon Diversion ²	Small River Diversion	40%	50%	2.3	0.2	
Swamp Forests ³	Treatment wetland	70%	50%	20	2.0	

1 Perez et al 2011; 2 Hyfield et al. 2008, Day et al. 2009; 3 Hunter et al 2009

Estimating Diversion Nutrient Removals: Current and Future Conditions

- Need a tool for estimating the range of conservative nutrient removals on a flow basis
- First-order area based model

CH2M Hill Treatment Wetland Toolkit (*P-k-C* model*)[†]

- A = Wetland area (square meters m²)
- Q = Flow (cubic meters per year, m³/yr)
- C_i = Influent concentration (mg/L)
- $C_{\rm e}$ = Effluent concentration (mg/L)
- C* = Background concentration (mg/L)
- k = First-order, area-based removal rate constant (m/yr)

CH2MHILL

P = Weathering factor

 ${\ensuremath{\vec{t}}}$ Based on work by Kadlec, Knight, and Wallace

Model Assumptions Comparison to Published Estimates

Assumptions:

- o diversion operations
- $\circ~$ residence time 3 and 12 days

Used similar hydraulic loading estimates from to the Caernarvon diversion (Hyfield et al. 2008)

Compared model and field removal

- TN = **2.0** g/m2/yr
- TP = 0.2 0.3 g/m2/yr

Caernarvon - 1998

Nutrient Removal Estimates

Residence Time = 12 days		ТМ	ТР	
20 ac / cfs				
Mass loading	(g/m²/yr)	6.1	0.54	
Mass removal	(g/m²/yr)	2.1	0.31	
Removal Efficiency	(%)	34%	58%	

N = 250 – 360 lbs / cfs / yr

P = 20 - 55 lbs / cfs / yr

Cost Comparison of N and P Removals With Other Trading Programs

Restoration Project Cost Statistics Summary

		Area for Marsh Creation (ac) Design Flow for Diversions (cfs)			Total Project Costs Million 2011 Dollars			
	# of Projects in Data Set	Min	Max	Average	Min	Мах	Average	
Marsh Creation	28	133	2,800	745	\$ 3.93	\$ 62.60	\$ 21.54	
Freshwater Diversion	11	1,000	35,000	7,468	\$ 6.92	\$ 177.05	\$ 77.24	
Sediment Diversion	6	2,500	50,000	21,650	\$ 1.40	\$ 278.30	\$ 61.99	

What does it cost to create a N-credit? Comparison with other trading programs

What does it cost to create a P-credit? Comparison with other trading programs

Potential Credit Supply and Demand Scenarios Illustrations for Louisiana

Annual N and P Supply Two Diversions, ¹/₂ Design Capacity, Op's 3 mo

Potential Regulatory Demand Louisiana NPDES Major Dischargers

- Regulatory demand in LA
 NPDES major dischargers
 2007 discharge = 1,463 MGD *
- Assumed concentration reductions 50%
- ~70 million lbs of N reductions could be required

* EPA Discharge Monitoring Report Pollutant Loading Tool (EPA, 2011)

Potential Nitrogen Credit Demand % Needed for NPDES Compliance

Potential Revenue: Credit Demand and Nitrogen Price

Summary Points

Summary

• CPRA costs:

within range of other programs

- Profit is not the goal:
 CPRA may competitively price credits
- **Regulatory drivers:** are developing for Miss. R.
- Revenue may be significant enough to enhance restoration projects

Challenges and Opportunities

Regulatory

 LDEQ is interested in advancing a platform for nutrient trading

Science

- Project performance needs to be documented
- Need to improve monitoring and prediction tools

Opportunities

 Partner with upstream states for advancing Mississippi River interstate trading

Questions?

